A Note on Generic Objects and Locally Finite Triangulated Categories
نویسندگان
چکیده
منابع مشابه
Locally finite triangulated categories ✩
A k-linear triangulated category A is called locally finite provided ∑ X∈indA dimk HomA(X,Y ) < ∞ for any indecomposable object Y in A. It has Auslander–Reiten triangles. In this paper, we show that if a (connected) triangulated category has Auslander–Reiten triangles and contains loops, then its Auslander–Reiten quiver is of the form L̂n: · · · · ̂ n n− 1 2 1 By using this, we prove that the Aus...
متن کاملA Note on Support in Triangulated Categories
In this note, I define a notion of a compactly supported object in a triangulated category. I prove a number of propositions relating this to traditional notions of support and give an application to the theory of derived Morita equivalence. I also discuss a connection to supersymmetric gauge theories arising from D-branes at a singularity.
متن کاملObjects in Triangulated Categories
We introduce the Calabi-Yau (CY) objects in a Hom-finite Krull-Schmidt triangulated k-category, and notice that the structure of the minimal, consequently all the CY objects, can be described. The relation between indecomposable CY objects and Auslander-Reiten triangles is provided. Finally we classify all the CY modules of selfinjective Nakayama algebras, determining this way the self-injectiv...
متن کاملDimensions of Triangulated Categories via Koszul Objects
Lower bounds for the dimension of a triangulated category are provided. These bounds are applied to stable derived categories of Artin algebras and of commutative complete intersection local rings. As a consequence, one obtains bounds for the representation dimensions of certain Artin algebras.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Categorical Structures
سال: 2015
ISSN: 0927-2852,1572-9095
DOI: 10.1007/s10485-015-9410-2